

Contrôle non-destructif pour le milieu industriel QMOS, QS suivant normes ASME et/ou NF EN Inspection, Expertise

Créée en 2012, LSF Inspection \& services est une Société à Actions Simplifiées (SAS) basée en Picardie. La société intervient en France et à l'Etranger et plus particulièrement en Picardie, Nord-Pas-de-Calais, île de France,

Normandie, Champagne Ardenne. L'activité de la société est le contrôle non-destructif pour le milieu industriel, les qualifications de soudage, l'inspection, l'expertise. Nos équipes travaillent en nos ateliers et en déplacement sur vos sites. Notre équipe est composée de personnel qualifié. (Cofrend N2, PCR, CAMARI, etc.....)

- Notre société est certifié MASE -

CONTRÔLES

DURETÉ

La dureté d'un matériau définit la résistance qu'oppose une surface de l'échantillon à la pénétration d'un poinçon, par exemple une bille en acier trempé (dureté Brinell) ou une pyramide en diamant (dureté Vickers).
S'il y résiste bien, il est dit dur, sinon il est dit mou. La dureté se mesure sur différentes échelles selon le type de matériau considéré.

FERRITE
La mesure du taux de ferrite est une méthode de contrôle non destructif qui
permet de déterminer la teneur de la ferrite dans un acier donné. Cette méthode n'est applicable que dans une gamme de 0 à 80% de Fer dans le cas des aciers inoxydables et duplex. Le principe de mesure du nombre de ferrite repose sur le principe d'induction magnétique. Un champ magnétique généré par une bobine entre en interaction avec les composants magnétiques de la pièce. Les variations du champ magnétiques induisent une tension proportionnelle au taux de ferrite dans une seconde bobine. Cette tension est ensuite exploitée. Tous les composants à l'intérieur de la structure non magnétique sont reconnus.

CONTRÔLE MAGNÉTOSCOPIE (MT)

La magnétoscopie est une technique de contrôle non destructif qui consiste à créer un flux magnétique intense à la surface d'un matériau ferromagnétique. Lors de la présence d'un défaut sur son chemin, le flux magnétique est dévié et crée une fuite qui, en attirant les particules (colorées ou fluorescentes) d'un produit révélateur, fournit une signature particulière caractéristique du défaut.

CONTRÔLE PAR ULTRASONS (US)
 Le contrôle par ultrasons est basé sur la transmission, la réflexion et l'absorption d'une onde ultrasonore se propageant dans la pièce à contrôler. Le train d'onde émis se réfléchit sur les défauts puis revient vers le traducteur (qui joue souvent le rôle d'émetteur et de récepteur). L'interprétation des signaux permet de positionner le défaut et de définir ses dimensions relatives. Cette méthode présente une résolution spatiale élevée et la possibilité de trouver des défauts aussi bien dans le volume de la matière qu'en surface. L'étape d'inversion est simple, du moins pour les pièces géométriquement et matériellement simples. Cette méthode nécessite d'effectuer un balayage mécanique exhaustif de la pièce. Il est d'ailleurs souvent nécessaire de contrôler plusieurs surfaces de la pièce pour pouvoir faire une représentation tridimensionnelle des défauts. surface sur tous matériaux métalliques,
sur de nombreux matériaux minéraux (verre, céramiques) et également sur certains matériaux organiques.

METHODE MULTIELEMENTS "PHASED ARRAY"X La technologie multiéléments consiste à utiliser des traducteurs divisés en plusieurs petits traducteurs élémentaires et à exciter chacun de ces traducteurs élémentaires avec un écart de temps (retard) qui va permettre de créer un faisceau par interférences constructives. On peut ainsi créer des faisceaux inclinés ou focalisés avec des traducteurs au contact sur des surfaces droites. En modifiant d'un tir à l'autre ces retards, le faisceau pourra être soit déplacé, soit modifié dans sa direction. On crée ainsi un phénomène de "balayage" qui est soit un balayage linéaire, soit un balayage sectoriel. De plus, on peut superposer à cela une focalisation électronique sans déplacer le traducteur ou sans adapter sa surface d'entrée. Ces technologies sont directement issues des technologies médicales et ont été adaptées aux problèmes industriels et aux matériaux industriels.

METHODE TOFD "TIME OF FLIGHT DIFFRACTION"

Le contrôle par méthode TOFD consiste à contrôler une soudure en utilisant deux traducteurs positionnés de part et d'autre de la soudure, fonctionnant en transmission. Les traducteurs sont choisis de telle manière que le faisceau soit très divergent et qu'll "insonifie" le plus grand volume possible de la soudure si ce n'est la totalité de la soudure. Si une discontinuité est présente dans la soudure, celle-ci va diffracter une partie de l'énergie suivant les lois habituelles de l'acoustique. C'est cette énergie diffractée qui va être récupérée par le traducteur de réception et qui va servir à localiser la discontinuité par la mesure du temps de vol. Le grand nombre de données généré rend utile la visualisation sous forme d'imagerie Bscan codé en niveaux de gris qui permet d'autant plus d'analyser plus facilement des signaux d'amplitudes assez faibles. Ainsi, un contrôle par méthode TOFD permet d'obtenir une "image" de la soudure.

PMI FLUORESCENCE X

La spectrométrie de fluorescence X est une méthode d'analyse chimique utilisant une propriété physique de la matière, la fluorescence de rayons X . Lorsque l'on bombarde de la matière avec des rayons X, la matière réémet de l'énergie sous la forme, entre autres, de rayons X ; c'est la fluorescence X , ou émission secondaire de rayons X. Le
spectre des rayons X émis par la matière est caractéristique de la composition de l'échantillon, en analysant ce spectre, on peut en déduire la composition élémentaire, c'est-à-dire les concentrations massiques en éléments.

CONTRÔLE RADIOLOGIE X (RT)

Les rayons X en contrôle non destructif sont principalement utilisés pour réaliser des radiographies X . L'avantage de cette technique est de fournir des informations directement exploitables sur l'intérieur des objets ou des matériaux. L'étape d'inversion peut être assez réduite et la résolution spatiale suffisamment bonne. Toutefois, linterprétation des images demande de l'expertise et la réalisation des clichés nécessite des conditions de sécurité pour l'opérateur et l'environnement.

SPECTROMÉTRIE
Dans la méthode d'analyse en spectrométrie par émission optique (OES), les atomes d'un échantillon sont excités par l'énergie fournie par un arc électrique produit entre l'électrode de la sonde et la pièce. Cela chauffe les atomes à très haute température, et les atomes ainsi excités émettent de la lumière à une longueur d'onde caractéristique. L'analyse de cette lumière permet d'obtenir une information qualitative et quantitative.

Nos inspecteurs interviennent à la demande des industriels en France et à l'international pour suivre la fabrication de leurs équipements, valider leurs modes opératoires et leurs procédures de contrôle.
Nos inspecteurs interviennent sur les sites industriels pour des donneurs d'ordres afin de suivre la fabrication de leur projet.

Les différents types de contrôles sont les suivants:
 - Test Hydraulique - Contrôle dimensionnel - Assistance et supervision soudage
 - Assistance contrôle non-destructif - Test de fonctionnement • Analyse matière - Contrôle de dureté

PMII

Nous accompagnons les entreprises, grands groupes ou PME, dans la mise en œuvre, sur leur site, du plan de modernisation des installations industrielles dont l'objectif est d'anticiper les conséquences du vieillissement des équipements.
Ces contrôles ont pour but, de suivre les recommandations relatives à l'inspection et à la maintenance des réservoirs aériens cylindriques verticaux afin de permettre une surveillance adaptée de ces réservoirs pour le maintien de leur intégrité.
Cette inspection externe détaillée s'applique aux réservoirs visés de l'arrêté du 03 octobre 2010 pour la rubrique ICPE 1432, inspections des réservoirs mentionnées à l'article 29 et de l'arrêté du 04 octobre 2010 qui a pour sujet le plan de modernisation, inspections des réservoirs mentionnées à l'article 4.

SCAN ARGENTIQUE

Scanner de films argentique haute résolution haute densité.
Conçu pour offrir des performances haut de gamme dans la numérisation de films argentique, nécessaire à l'environnement industriel et les applications CND.
Le scanner est capable de travailler sur tous les formats de film standard pouvant être numérisés, jusqu'à une largeur de 35 cm , sans limitation de longueur et avec une résolution comprise entre $50 \mu \mathrm{~m}$ et $500 \mu \mathrm{~m}$. C'est le premier et le seul numériseur sur le marché qui peut travailler sur des densités de 0 jusqu'à $4,70 \mathrm{D}$ avec la sensibilité au contraste requis.
C'est un scanner répondant aux exigences de classe DS de film, selon EN 14096 partie 2.

Cette classification a été évaluée et confirmée par BAM, le fédéral allemand Institut de recherche sur les matériaux et à l'essai.
Le système utilise un faisceau laser, qui balaye le film par un système de miroir de polygone.
La lentille F-Téta évite les distorsions de l'image, en gardant la distance optique du faisceau laser inchangé à tous les spots de la zone balayée. Le processus d'amplification logarithmique garanti un haut rapport signal sur bruit jusqu'à 4,70 densité.
Matériel étalonné et caractérisé qui vous garanti un balayage sans artefact, et une répétabilité.
Un film de $35 \times 43 \mathrm{~cm}$ peut être numérisé en 7 secondes.
La solution de numérisation de film pour la gestion de vos archives, pour transfert d'image à vos donneurs d'ordre ou décideurs.

